Math, asked by ayushgupta7880, 1 year ago

if a=1,b=2 then find the value of (a^b+b^a)^-1​

Answers

Answered by kiki9876
19

Answer:

1/3

Step-by-step explanation:

a=1

b=2

(a^b+b^a)^-1

=(1^2+2^1)^-1

=(1+2)^-1

=3^-1

=1/3

Answered by pulakmath007
2

\displaystyle \sf{ {( {a}^{b} +  {b}^{a}  )}^{ - 1}   } =  \frac{1}{3}

Given :

\displaystyle \sf{ The \:expression   \: \:  {( {a}^{b} +  {b}^{a}  )}^{ - 1}   }

To find :

The value of the expression for a = 1 , b = 2

Solution :

Step 1 of 2 :

Write down the given expression

\displaystyle \sf{ The \:expression   \: is \: \:  {( {a}^{b} +  {b}^{a}  )}^{ - 1}   }

Step 2 of 2 :

Find the value of the expression

Putting a = 1 , b = 2 in the given expression we get

\displaystyle \sf =  {( {1}^{2} +  {2}^{1}  )}^{ - 1}

\displaystyle \sf =  {(1 + 2 )}^{ - 1}

\displaystyle \sf =  {3}^{ - 1}

\displaystyle \sf{ =  \frac{1}{3}   }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If p(x) = 2x + 1, then find p( -1)

https://brainly.in/question/20224817

2. if polynomial p(t)=t⁴-t³+t²+6,then find p(-1)

https://brainly.in/question/3539645

#SPJ3

Similar questions