If a+1/b=b+1/c=c+1/c .then find out the value of a^2*b^2*c^2
Answers
Step-by-step explanation:
Answer
Δ=
∣
∣
∣
∣
∣
∣
∣
∣
a
1
a
2
a
3
b
1
b
2
b
3
c
1
c
2
c
3
∣
∣
∣
∣
∣
∣
∣
∣
⇒Δ=a
1
(b
2
c
3
−b
3
c
2
)+b
1
(a
3
c
2
−a
2
c
3
)+c
1
(a
2
b
3
−a
3
b
2
)
We have to find
∣
∣
∣
∣
∣
∣
B
2
B
3
C
2
C
3
∣
∣
∣
∣
∣
∣
Here, B
2
is cofactor of element b
2
So, B
2
=
∣
∣
∣
∣
∣
∣
a
1
a
3
c
1
c
3
∣
∣
∣
∣
∣
∣
⇒B
2
=a
1
c
3
−a
3
c
1
C
2
is cofactor of element c
2
So, C
2
=−
∣
∣
∣
∣
∣
∣
a
1
a
3
b
1
b
3
∣
∣
∣
∣
∣
∣
⇒C
2
=a
3
b
1
−a
1
b
3
B
3
is cofactor of element b
3
So, B
3
=−
∣
∣
∣
∣
∣
∣
a
1
a
2
c
1
c
2
∣
∣
∣
∣
∣
∣
⇒B
3
=a
2
c
1
−a
1
c
2
C
3
is cofactor of element c
3
So, C
3
=
∣
∣
∣
∣
∣
∣
a
1
a
2
b
1
b
2
∣
∣
∣
∣
∣
∣
⇒C
3
=a
1
b
2
−a
2
b
1
Now,
∣
∣
∣
∣
∣
∣
B
2
B
3
C
2
C
3
∣
∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
∣
a
1
c
3
−a
3
c
1
a
2
c
1
−a
1
c
2
a
3
b
1
−a
1
b
3
a
1
b
2
−a
2
b
1
∣
∣
∣
∣
∣
∣
=a
1
2
b
2
c
3
−a
1
a
2
b
1
c
3
−a
1
a
3
b
2
c
1
−a
1
2
b
3
c
2
+a
1
a
2
b
3
c
1
+a
1
a
3
b
1
c
2
=a
1
[a
1
(b
2
c
3
−b
3
c
2
)+b
1
(a
3
c
2
−a
2
c
3
)+c
1
(a
2
b
3
−a
3
b
2
)]
=a
1
Δ
Answer:
please refer to the image