Math, asked by momaan, 11 months ago


if a = 1 by 3 minus 2 root 2 and b is equal to 1 by 3 + 2 root 2 find the value of a square b + a b square

Answers

Answered by ashishks1912
7

The value of a^2b+ab^2=-(b+a)

Step-by-step explanation:

Given expressions are a=\frac{1}{3-2\sqrt{2}} and b=\frac{1}{3+2\sqrt{2}}

To find a^2b+ab^2

Substitute the values of a and b a=\frac{1}{3-2\sqrt{2}} and b=\frac{1}{3+2\sqrt{2}} in the above expression

a^2b+ab^2=\left[\frac{1}{3-2\sqrt{2}}\right]^2\left[\frac{1}{3+2\sqrt{2}}\right]+\left[\frac{1}{3-2\sqrt{2}}\right]\left[\frac{1}{3+2\sqrt{2}}\right]^2  ( using the identities (a+b)^2-a^2+2ab+b^2 and (a-b)^2=a^2-2ab+b^2 )

=(\frac{1}{3^2-2(3)(2\sqrt{2})+(2\sqrt{2})^2)})\left[\frac{1}{3+2\sqrt{2}}\right]+\left[\frac{1}{3-2\sqrt{2}}\right](\frac{1}{3^2+2(3)(2\sqrt{2})+(2\sqrt{2})^2})

=\frac{1}{9-12\sqrt{2}+8})(\frac{1}{3+2\sqrt{2}})+(\frac{1}{3-2\sqrt{2}})(\frac{1}{9+12\sqrt{2}+8})

=\frac{1}{(9-12\sqrt{2}+8)(3+2\sqrt{2})}+\frac{1}{(3-2\sqrt{2})(9+12\sqrt{2}+8)} ( using the distributive property )

=\frac{1}{27+18\sqrt{2}-36\sqrt{2}-48+24+16\sqrt{2}}+\frac{1}{27+36\sqrt{2}+24-18\sqrt{2}-48-16\sqrt{2}}

=\frac{1}{-3-2\sqrt{2}}+\frac{1}{-3+2\sqrt{2}}

=-\frac{1}{3+2\sqrt{2}}-\frac{1}{3-2\sqrt{2}}

=-b-a

=-(b+a)

Therefore a^2b+ab^2=-(b+a)

Answered by somvirsinghdalanwas
2

Answer:

2 { \sqrt[..3y \\ 333 \times \frac{?}{?} ]{?}  \times \frac{?}{?} }^{2}

Similar questions