Math, asked by prashish69, 4 months ago

If  a = (1+i)/2 , if the value of a^6 + a^4 + a^2 + 1 is  u(1+i)  . Find u​

Answers

Answered by ravindrabansod26
139

Given:-

a = \frac{1 + i}{2}

and ⇒ a^6 + a^4 + a^2 + 1 = u(1+i)

To find:-

⇒ u = ?

Solution:-

a^6 + a^4 + a^2 + 1 = u(1+i)

( taking common )

a^4 ( a^2 + 1 ) + 1( a^2 + 1 )

( a^4 + 1 )(* a^2 + 1 )------(1)

@from given:

a = \frac{ 1 + i}{2}

squaring both side:

a^2 = \frac{ 1 + i^2 + 2i}{2}

a^2 = \frac{2i}{2}

a^2 = i

therefore:

a^6 + a^4 + a^2 + 1 = u(1+i)

( a^4 + 1 ) ( a^2 + 1) = u(1+i) ------( from(1))

((a^2)^2 + 1 ) ( a^2 +1) = u(1+i)

( i^2 + 1 ) ( i^2 + 1 ) = u ( 1+i )

0 = u(1+i)

⇒ u = 0

hence the value of u is 0..

thank you......

_-_-_-_-_-_-


ravindrabansod26: and
ravindrabansod26: FOLLOW
ravindrabansod26: me
ravindrabansod26: you ans is
ravindrabansod26: Given:-

⇒ a = \frac{1 + i}{2}a=21+i​
and ⇒ a^6 + a^4 + a^2 + 1 = u(1+i)a6+a4+a2+1=u(1+i)
ravindrabansod26: To find:-

⇒ u = ?
ravindrabansod26: Solution:-

⇒ a^6 + a^4 + a^2 + 1 = u(1+i)a6+a4+a2+1=u(1+i)
( taking common )
⇒ a^4 ( a^2 + 1 ) + 1( a^2 + 1 )a4(a2+1)+1(a2+1)
⇒ ( a^4 + 1 )(* a^2 + 1 )------(1)(a4+1)(∗a2+1)−−−−−−(1)
@from given:
ravindrabansod26: ⇒ a = \frac{ 1 + i}{2}a=21+i​
squaring both side:
⇒ a^2 = \frac{ 1 + i^2 + 2i}{2}a2=21+i2+2i​
⇒ a^2 = \frac{2i}{2}a2=22i​
⇒ a^2 = ia2=i
ravindrabansod26: therefore:
⇒ a^6 + a^4 + a^2 + 1 = u(1+i)a6+a4+a2+1=u(1+i)
⇒ ( a^4 + 1 ) ( a^2 + 1) = u(1+i) ------( from(1))(a4+1)(a2+1)=u(1+i)−−−−−−(from(1))
ravindrabansod26: ⇒ ((a^2)^2 + 1 ) ( a^2 +1) = u(1+i)((a2)2+1)(a2+1)=u(1+i)
⇒ ( i^2 + 1 ) ( i^2 + 1 ) = u ( 1+i )(i2+1)(i2+1)=u(1+i)
⇒ 0 = u(1+i)0=u(1+i)
⇒ u = 0
hence the value of u is 0..
thank you.
Similar questions