Math, asked by vrinda128, 1 year ago

if a^1/m=b^1/n=c^1/p and abc=1 then find the value of m+n+p​

Answers

Answered by Swarup1998
0

m+n+p=0

Step-by-step explanation:

Let, a^{1/m}=b^{1/n}=c^{1/p}=k, where k\neq 0

Then,

  • a^{1/m}=k\Rightarrow a=k^{m}

  • b^{1/n}=k\Rightarrow b=k^{n}

  • c^{1/p}=k\Rightarrow c=k^{p}

Given, abc=1

\Rightarrow k^{m}\times k^{n}\times k^{p}=1

\Rightarrow k^{m+n+p}=k^{0}

  • Using a^{m}\times a^{n}\times a^{p}=a^{m+n+p}

  • and a^{0}=1

Now, comparing both sides, we get

m+n+p=0

#SPJ3

Similar questions