Math, asked by bansalnitika0904, 7 months ago

If A = 1 + r^a+ r^2a +r^3a + .... as and
B = 1+ r^b + r^2b +r^3b + .... as,
then a/b is equal to.............​

Answers

Answered by amansharma264
7

EXPLANATION.

 \sf :  \implies \: a \:  = 1 +  {r}^{a}  +  {r}^{2a} +  {r}^{3a}  + ....... \\  \\ \sf :  \implies \: b \:  =  \: 1 +  {r}^{b}   +  {r}^{2b}  +  {r}^{3b}  + ....... \\  \\ \sf :  \implies \: then \:  \frac{a}{b}  \: equals \: to \:

\sf :  \implies \: sum \: of \: infinite \: term \: of \: gp \\  \\ \sf :  \implies \:  s_{ \infty } \:  =  \frac{a}{1 - r}  \: =   |x|  < 1

\sf :  \implies \: a \:  = 1 +  {r}^{a}  +  {r}^{2a}  +  {r}^{3a} + ....... \\  \\ \sf :  \implies \: first \: term \:  = a \:  = 1 \\  \\ \sf :  \implies \: common \: ratio \:  = \: r \:  =  \frac{b}{a}  =  \frac{ {r}^{a} }{1}  =  {r}^{a}  \\  \\ \sf :  \implies \:  s_{ \infty } \:  =  \frac{1}{1 -  {r}^{a} }  \\  \\ \sf :  \implies \: a \:  =  \frac{1}{1 -  {r}^{a \: } }

\sf :  \implies \: 1 -  {r}^{a}  =  \dfrac{1}{a}  \\  \\ \sf :  \implies \: r {}^{a}  = 1 -  \frac{1}{a}  \\  \\ \sf :  \implies \: r {}^{a}  =  \frac{a - 1}{a} \\  \\  \sf :  \implies \: take \: log \: on \: both \: sides \:  \\  \\ \sf :  \implies \:  log( {r}^{a} )  =  log( \frac{a - 1}{a} )  \\  \\ \sf :  \implies \: a log(r {}^{} )  =  log( \frac{a - 1}{a} )  \:  \:  \:  \: ......(1)

\sf :  \implies \: b \:  = 1 +  {r}^{b}  +  {r}^{2b}  +  {r}^{3b}  + ....... \\  \\ \sf :  \implies \: first \: term \:  = a \:  = 1 \\  \\ \sf :  \implies \: common \: ratio \:  = r \:  =  \frac{b}{a}  =  \frac{ {r}^{b} }{1}  =  {r}^{b}  \\  \\ \sf :  \implies \:  s_{ \infty } \:  =  \frac{1}{1 -  {r}^{b} } \\  \\  \sf :  \implies \: b \:  =  \frac{1}{1 -  {r}^{b} }

\sf :  \implies \: 1 -  {r}^{b}  =  \dfrac{1}{b}  \\  \\ \sf :  \implies \:  {r}^{b}  = 1 -  \frac{1}{b}  \\  \\ \sf :  \implies \: r {}^{b}  =  \frac{b - 1}{b} \\  \\  \sf :  \implies \: take \: log \: on \: both \: sides \:  \\  \\ \sf :  \implies \:  log( {r}^{b} )  =  log( \frac{b - 1}{b} ) \\  \\  \sf :  \implies \: b  \: log(r)  =   log( \frac{b - 1}{b} )  \:  \:  \:  \: ........(2)

\sf :  \implies \: from \: equation \: (1) \:  \: and \:  \: (2) \:  \: we \:  \: get \\  \\ \sf :  \implies \:  \frac{a log(r) }{b log(r) }  =  \frac{  log( \dfrac{a - 1}{a} )  }{ log( \dfrac{b - 1}{b} ) }  \\  \\ \sf :  \implies \:   \frac{a}{b}  =  \frac{ log( \dfrac{a - 1}{a} ) }{ log( \dfrac{b - 1}{b} ) }

Similar questions