Math, asked by sejal4283, 1 year ago

If a=-1+root3i/2,b=-1-root3i/2 then show that a²=b and b²=a.​

Answers

Answered by ashishks1912
4

Hence we have show that  a^2=b and b^2=a

Step-by-step explanation:

Given that a=\frac{-1+\sqrt{3}i}{2} and b=\frac{-1-\sqrt{3}i}{2}

To show that a^2=b and b^2=a

  • Let us first show that a^2=b

Take LHS a^2

Substitute the value of a in the above expression we get

=(\frac{-1+\sqrt{3}i}{2})^2

=\frac{(-1+\sqrt{3}i)^2}{2^2} ( by using the property (\frac{a}{b})^m=\frac{a^m}{b^m} )

=\frac{(-1)^2+(\sqrt{3}i)^2+2(-1)(\sqrt{3}i)}{4} ( by using the identity (a+b)^2=a^2+b^2+2ab here a=-1 and b=\sqrt{3}i )

=\frac{1+3i^2-2i\sqrt{3}}{4}

=\frac{1+3(-1)-2i\sqrt{3}}{4} ( by using i^2=-1 )

=\frac{1-3-2i\sqrt{3}}{4}

=\frac{-2-2i\sqrt{3}}{4}

=\frac{2(-1-i\sqrt{3}}{4}

=\frac{-1-\sqrt{3}i}{2}

=b=RHS

Therefore a^2=b hence proved

  • Let us show that b^2=a

Take LHS b^2

Substitute the value of a in the above expression we get

=(\frac{-1-\sqrt{3}i}{2})^2

=\frac{(-1-\sqrt{3}i)^2}{2^2} ( by using the property (\frac{a}{b})^m=\frac{a^m}{b^m} )

=\frac{(-1)^2+(-\sqrt{3}i)^2+2(-1)(-\sqrt{3}i)}{4} ( by using the identity (a+b)^2=a^2+b^2+2ab here a=-1 and b=-\sqrt{3}i )

=\frac{1+3i^2+2i\sqrt{3}}{4}

=\frac{1+3(-1)+2i\sqrt{3}}{4} ( by using i^2=-1 )

=\frac{1-3+2i\sqrt{3}}{4}

=\frac{-2+2i\sqrt{3}}{4}

=\frac{2(-1+i\sqrt{3}}{4}

=\frac{-1+\sqrt{3}i}{2}

=a=RHS

Therefore b^2=a hence proved.

Similar questions