Math, asked by tinaghale, 5 months ago

If a ^1÷x=b^1÷3 and ab = 1, prove that x + 3 = 0.​

Answers

Answered by Anonymous
24

 \bf \large \bold{Hola!}

GiveN :

 \mapsto \sf \:  {a}^{ \frac{1}{x} }  =  {b}^{ \frac{1}{3} }

 \sf \mapsto \: ab = 1

___________________________

ShoW ThaT :

 \mapsto \sf \: x + 3 = 0

___________________________

ProoF :

 \mapsto \:  \:  \sf \:  {a}^{ \frac{1}{x} }  =  {b}^{ \frac{1}{3} } \:  \:  \:  \:  [ \: Given \: ]

 \mapsto \sf \:  \:  \:  {a}^{ \frac{1}{x} }  =  {a}^{ -  \frac{1}{3} } \:  \:  \:  [ \: as \:\: ab=1 \:;  \:  \implies \:\: b=\frac{1}{a} ] \\

 \mapsto \sf \:  \:  \:  \:  \frac{1}{x}  =   - \frac{1}{3}  \\

 \sf \mapsto  \: \:   \:  \: \frac{3}{x} + 1 = 0 \\

 \sf \therefore \:  \:  \:  \:  \:  \: { \underline{ \boxed{ \sf{ 3 + x = 0}}}} \:  \:  \: [ \: Proved \: ]

____________________

HAVE A WONDERFUL DAY...

Similar questions