Math, asked by naughtyjehi, 1 year ago

If a = √10+ √ 5 ÷ √ 10 -√5 and b= √10-√ 5÷ √10 +√5 ; then show that √a-√ b- 2√ ab= 0


answer this question ✔✔

BE BRAINLY ❣

Answers

Answered by amitnrw
60

Answer:

Step-by-step explanation:

a = \frac{\sqrt{10} + \sqrt{5} }{\sqrt{10} -\sqrt{5} } \\b = \frac{\sqrt{10} - \sqrt{5} }{\sqrt{10} +\sqrt{5} } \\To Show that\\\sqrt{a} - \sqrt{b} - 2\sqrt{ab} = 0\\\sqrt{a} - \sqrt{b} - 2\sqrt{ab} = 0\\=> \sqrt{a} - \sqrt{b} = 2\sqrt{ab} \\Squaring both sides\\=> a + b - 2\sqrt{ab} = 4ab\\

a = \frac{\sqrt{10} + \sqrt{5} }{\sqrt{10} - \sqrt{5} } \\= \frac{\sqrt{10} + \sqrt{5} }{\sqrt{10} - \sqrt{5} } \times \frac{\sqrt{10} + \sqrt{5} }{\sqrt{10} + \sqrt{5} }\\=\frac{10 + 5 + 2\sqrt{50} }{10-5} \\=\frac{15 + 2\times5\sqrt{2} }{5} \\= 3 + 2\sqrt{2}

b = \frac{\sqrt{10} - \sqrt{5} }{\sqrt{10} +\sqrt{5}}\\b = \frac{\sqrt{10} - \sqrt{5} }{\sqrt{10} +\sqrt{5}} \times \frac{\sqrt{10} - \sqrt{5} }{\sqrt{10} -\sqrt{5}}\\b = \frac{10 + 5 - 2\sqrt{50} }{10 -5} \\b = 3 - 2\sqrt{2}

ab = (3 + 2\sqrt{2})(3 - 2\sqrt{2})\\ab = 9 -8\\ab = 1

putting values of a & b in

a + b - 2√ab = 4ab

=> 3 +2√2 + 3 -2√2 - 2√1 = 4×1

=> 6 - 2 = 4

=> 4 - 4 = 0

as √0 = 0

hence √a - √b - 2√ab = 0

QED


naughtyjehi: sir i have asked to solve...
naughtyjehi: √a-√b - 2√ab
naughtyjehi: which is equal to 0
naughtyjehi: reply??
amitnrw: √a-√ b- 2√ ab= 0 √a-√ b- 2√ ab = LHS & 0 = RHS Also √a-√ b- 2√ ab= 0 => √a-√ b = 2√ ab ( all are the same things) like a-b = 0 or a= b are same thing
naughtyjehi: thnku
naughtyjehi: very much
Answered by akdalai1504
32

Plzzzzz mark it brainliest if it really helps.......

Attachments:
Similar questions