If a = √10+ √ 5 ÷ √ 10 -√5 and b= √10-√ 5÷ √10 +√5 ; then show that √a-√ b- 2√ ab= 0answer this question ✔✔BE BRAINLY ❣
Answers
Answered by
2
Answer:
given a=( √10 +√5 )÷ ( √10 -√5)
b=(√10 - √5 )÷ ( √10 + √5 )
multiplying the conjugate on the numerator and the denominator
so a= ×
= (10 +2√50 + 5 ) ÷ ( 10-5)
= (15 +2√50 ) ÷5
= 3 +2√2
b = ( √10 -√5) (√10 - √5 ) ÷ (√10 +√5 )(√10 - √5 )
= (10 -2√50+5 )÷ (10 -5)
= (15 -2√50)/ 5
=3-2√2
ab ={ ( √10 +√5 )÷ ( √10 -√5) } ×{(√10 - √5 )÷ ( √10 + √5 )}
= 1
LHS = √a-√ b- 2√ ab
= √(3 +2√2) -√(3-2√2) - 2√1
= 2 -2
= 0 =RHS
HENCE PROVED
Similar questions