Math, asked by sharmamalti52, 11 months ago

if a=12,d=4 and S=672,Find number of terms​

Answers

Answered by umiko28
3

Answer:

your \: ans

Step-by-step explanation:

here \\ a = 12 \\ d = 4 \\ sn = 672 \\  \\ we \: know \: that \\ sn =  \frac{n}{2} [2a + (n - 1)d] \\  \\  \implies672 =  \frac{n}{2}[2 \times 12 + (n - 1) \times 4 ] \\  \\  \implies672 =  \frac{n}{2} (24 + 4n - 4) \\  \\  \implies \: 672 \times 2 =  20n +   {4n}^{2}   \\  \\ \implies1344 =  {4n}^{2} + 20n \\  \\  \implies {n}^{2}  + 5n -336 = 0 \\  \\ \implies {n}^{2}  + (21n - 16n) - 336 = 0 \\  \\ \implies {n}^{2}  + 21n - 16n - 336 = 0 \\  \\ \implies \: n(n  + 21) - 16(n + 21) = 0 \\  \\ \implies(n - 16)(n + 21) = 0 \\  \\ n =  - 21( \times ) \:  \:  \: and \: n = 16

hope it help you☢☢☢

Similar questions