Math, asked by aditya7575, 1 month ago

If A = [1221] and f(x) = (1 + x) (1 – x), then f(a) is​

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\mathsf{A=\left(\begin{array}{cc}1&2\\2&1\end{array}\right)\;and\;f(x)=(1-x)(1+x)}

\underline{\textbf{To find:}}

\textsf{f(A)}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{f(x)=(1-x)(1+x)}

\implies\mathsf{f(x)=1^2-x^2}

\implies\mathsf{f(x)=1-x^2}

\mathsf{Now,}

\mathsf{f(A)=I-A^2}

\mathsf{f(A)=\left(\begin{array}{cc}1&0\\0&1\end{array}\right)-\left(\begin{array}{cc}1&2\\2&1\end{array}\right)\left(\begin{array}{cc}1&2\\2&1\end{array}\right)}

\mathsf{f(A)=\left(\begin{array}{cc}1&0\\0&1\end{array}\right)-\left(\begin{array}{cc}1+4&2+2\\2+2&4+1\end{array}\right)}

\mathsf{f(A)=\left(\begin{array}{cc}1&0\\0&1\end{array}\right)-\left(\begin{array}{cc}5&4\\4&5\end{array}\right)}

\mathsf{f(A)=\left(\begin{array}{cc}1-5&0-4\\0-4&1-5\end{array}\right)}

\mathsf{f(A)=\left(\begin{array}{cc}-4&-4\\-4&-4\end{array}\right)}

\implies\boxed{\mathsf{f(A)=-4\left(\begin{array}{cc}1&1\\1&1\end{array}\right)}}

Similar questions