Math, asked by anandikulkarni05, 5 months ago

if A=[123115247] then find A-1 by elementary column transformation.​

Attachments:

Answers

Answered by jitumahi435
5

We need to recall the following definition of an inverse matrix.

  • A n\times n matrix A is said to be invertible if there is a n\times n matrix A^{-1} such that AA^{-1}=A^{-1}A=I

Given:

A=\left[\begin{array}{ccc}1&2&3\\1&1&5\\2&4&7\end{array}\right]

The determinant of the matrix A is,

|A|=1(1\cdot7-4\cdot5)-2(1\cdot7-2\cdot5)+3(1\cdot4-2\cdot1)

|A|=1(7-20)-2(7-10)+3(4-2)

|A|=-13-2(-3)+3(2)

|A|=-13+6+6

|A|=-1

As |A|\neq 0, A is a non-singular matrix.

\therefore\ A^{-1} exist.

consider, A^{-1}A=I

A^{-1}\left[\begin{array}{ccc}1&2&3\\1&1&5\\2&4&7\end{array}\right] =\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]

Apply the column operations. we get

C_2\rightarrow C_2-2C_1 , C_3\rightarrow C_3-3C_1

A^{-1}\left[\begin{array}{ccc}1&0&0\\1&-1&2\\2&0&1\end{array}\right] =\left[\begin{array}{ccc}1&-2&-3\\0&1&0\\0&0&1\end{array}\right]

C_2\rightarrow -C_2

A^{-1}\left[\begin{array}{ccc}1&0&0\\1&1&2\\2&0&1\end{array}\right] =\left[\begin{array}{ccc}1&2&-3\\0&-1&0\\0&0&1\end{array}\right]

C_1\rightarrow C_1-C_2 , C_3\rightarrow C_3-2C_2

A^{-1}\left[\begin{array}{ccc}1&0&0\\0&1&0\\2&0&1\end{array}\right] =\left[\begin{array}{ccc}-1&2&-7\\1&-1&2\\0&0&1\end{array}\right]

C_1\rightarrow C_1-2C_3

A^{-1}\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] =\left[\begin{array}{ccc}13&2&-7\\-3&-1&2\\-2&0&1\end{array}\right]

\therefore\ A^{-1}=\left[\begin{array}{ccc}13&2&-7\\-3&-1&2\\-2&0&1\end{array}\right]

Similar questions