Math, asked by harshadaripelli, 7 months ago

If a=13 , b=15 , c=15 , show tgat R=65/8 , r=4 , r1=21/2 , r2=12 and r3=14.​

Answers

Answered by mad210203
11

Given:

Given values are

a=13\\b=14\\c=15

To find:

We should find the values of R,r,r_1,r_2 and r_3.

Solution:

We know that,

s=\frac{a+b+c}{2} \\\triangle =\sqrt{s(s-a)(s-b)(s-c)}  \\ R=\frac{abc}{4\triangle} \\r=\frac{\triangle}{s}\\r_1=\frac{\triangle}{s-a}\\r_2=\frac{\triangle}{s-b}\\r_3=\frac{\triangle}{s-c}

First, find the value of s.

Substitute the required values in the formula.

\Rightarrow s=\frac{a+b+c}{2}

\\\Rightarrow s=\frac{13+14+15}{2}

\\\Rightarrow s=\frac{42}{2}

\\\Rightarrow s=21

Now, find the value of \triangle.

Substitute the required values in the formula.

\Rightarrow \triangle =\sqrt{s(s-a)(s-b)(s-c)}

\Rightarrow \triangle =\sqrt{21(21-13)(21-14)(21-15)}

\Rightarrow \triangle =\sqrt{21(8)(7)(6)}

\Rightarrow \triangle =\sqrt{7056}

\Rightarrow \triangle =84

Now, we will find the values of R,r,r_1,r_2 and r_3.

Finding the value of R,

Substitute the required values in the formula.

\Rightarrow R=\frac{abc}{4\triangle}

\Rightarrow R=\frac{13\times14\times15}{4\times84}

\Rightarrow R=\frac{2730}{336}

\Rightarrow R=\frac{65}{8}

Finding the value of r,

Substitute the required values in the formula.

\Rightarrow r=\frac{\triangle}{s}

\Rightarrow r=\frac{84}{21}

\Rightarrow r=4

Finding the value of r_1,

Substitute the required values in the formula.

\Rightarrow r_1=\frac{\triangle}{s-a}

\Rightarrow r_1=\frac{84}{21-13}

\Rightarrow r_1=\frac{84}{8}

\Rightarrow r_1=\frac{21}{2}

Finding the value of r_2,

Substitute the required values in the formula.

\Rightarrow r_2=\frac{\triangle}{s-b}

\Rightarrow  r_2=\frac{84}{21-14}

\Rightarrow r_2=\frac{84}{7}

\Rightarrow r_2=12

Finding the value of r_3,

Substitute the required values in the formula.

\Rightarrow r_3=\frac{\triangle}{s-c}

\Rightarrow r_3=\frac{84}{21-15}

\Rightarrow r_3=\frac{84}{6}

\Rightarrow r_3=14

Therefore, the values are R=\frac{65}{8} , r=4 , r_1=\frac{21}{2} , r_2=12 and r_3=14.

Similar questions