If
A = 142° then 2cos A/2
Answers
Answer:
hi
please mark me as the brainliest
Step-by-step explanation:
solution:
For all values of the angle A and B we know that, tan (A + B) = tanA+tanB1−tanAtanB,
For all values of the angle A and B we know that, tan (A + B) = tanA+tanB1−tanAtanB, sin A = 2 sin A2 cos A2
For all values of the angle A and B we know that, tan (A + B) = tanA+tanB1−tanAtanB, sin A = 2 sin A2 cos A2 and
For all values of the angle A and B we know that, tan (A + B) = tanA+tanB1−tanAtanB, sin A = 2 sin A2 cos A2 andcos A = cos2 A2 – sin2 A2
For all values of the angle A and B we know that, tan (A + B) = tanA+tanB1−tanAtanB, sin A = 2 sin A2 cos A2 andcos A = cos2 A2 – sin2 A2Now tan 142½°
For all values of the angle A and B we know that, tan (A + B) = tanA+tanB1−tanAtanB, sin A = 2 sin A2 cos A2 andcos A = cos2 A2 – sin2 A2Now tan 142½°= tan (90 + 52½°)
For all values of the angle A and B we know that, tan (A + B) = tanA+tanB1−tanAtanB, sin A = 2 sin A2 cos A2 andcos A = cos2 A2 – sin2 A2Now tan 142½°= tan (90 + 52½°)= - cot 52½°
Thank you