Math, asked by jaluhet, 1 month ago

If A = 15° , find the value of cos² 3A + 4cos4A – sin6A.

Answers

Answered by Anonymous
3

Step-by-step explanation:

 \cos {}^{2} (45)  + 4 \cos(60)  \\  =   ( \frac{1}{ \sqrt{2} } ) {}^{2}  +4 \times  \frac{1}{2}  \\  =  \frac{1}{2}  + 2 =  \frac{5}{2}

hope it's help ful

Answered by diwanamrmznu
2

given★

cos² 3A + 4cos4A – sin6A.------(1

where A=15°---------(2

----------------

solution★

EQ (1 value put on EQ (2

 =  \cos {}^{2} (3 \times 15)  + 4 \cos(4 \times 15) -  \sin(6 \times 15)   \\  \\  =  \cos {}^{2} (45)  + 4 \cos(60)  -  \sin(90) ..(3

we know that

 =  >  \cos(45) =  \frac{1}{ \sqrt{2} } \\  \\  =  >  \cos(60)    =  \frac{1}{2} \\  \\  =  >  \sin(90)   = 1....(4

EQ 4 value put on EQ 3

 =(\frac{1}{ \sqrt{2} })  {}^{2}  + 4 \times  \frac{1}{2}  - 6 \times 1 \\   = \frac{1}{2}  + 2 - 6 \\  \\  =  \frac{1}{2}  - 4 \\  \\  =  \frac{ - 7}{2}

=====================================

I hope it helps you

Similar questions