if A=15°,verify that 4 sin 2A .cos4A sin6A=1
Answers
Answered by
72
Hey
Here's your answer
A = 15 degree
so 2A = 30 deg.
4A = 60 deg.
6A = 90 deg.
RTP : 4 sin 2A .cos4A sin6A=1.
L.H.S.
4 sin 30 * cos 60 * sin 90
= (4* 1/2)* (1/2) * 1
= 2 *1/2 *1
= 1.
R.H.S. = 1
SO RHS = LHS [PROVED].
☆☆Hope it helps☆☆
Here's your answer
A = 15 degree
so 2A = 30 deg.
4A = 60 deg.
6A = 90 deg.
RTP : 4 sin 2A .cos4A sin6A=1.
L.H.S.
4 sin 30 * cos 60 * sin 90
= (4* 1/2)* (1/2) * 1
= 2 *1/2 *1
= 1.
R.H.S. = 1
SO RHS = LHS [PROVED].
☆☆Hope it helps☆☆
Answered by
1
Answer:
4 sin 2A×cos4A× sin6A=1 is proved
Step-by-step explanation:
Given,
A=15°
To prove,
4 sin 2A×cos4A× sin6A=1
Recall the values
sin 30° =
cos 60° =
sin 90° = 1
Solution:
sin 2A = sin 2 ×15 = sin 30°
∴ sin 2A = sin 30
cos 4A = cos 4 ×15 = cos 60°
∴ cos 4A = cos 60
Sin 6A = sin 6×15 = sin 90°
∴ sin 6A = sin 90
LHS = 4 sin 2A× cos4A ×sin6A
Substituting the values of sin2A, cos4A, and sin 90 we get
4 sin 2A× cos4A ×sin6A = 4×sin 30°×cos 60°× sin 90°
Substituting the values of sin 30°, cos 60°, sin 90° we get
= 4× × × 1
= 1 = RHS
∴ 4 sin 2A×cos4A× sin6A=1
Hence proved
#SPJ3
Similar questions