Math, asked by jaiswalsidharth8, 11 days ago

If A(2,0) , B(6,2) ,C (x,5) & D(0,3)  are the vertices of a parallelogram and (m, n) is the point of intersection of its diagonals , then which relation is correct ?​

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\textsf{A(2,0) , B(6,2) ,C (x,5) and D(0,3)  are the vertices of a parallelogram}

\underline{\textbf{To find:}}

\textsf{Point of intersection of diagonals}

\underline{\textbf{Solution:}}

\textsf{We know that,}

\textbf{"Diagonals of parallelogram bisect each other"}

\implies\textbf{Midpoint of diagonal AC = Midpoint of diagonal BD}

\implies\textsf{Point ofintersection of diagonals}

\textsf{= Midpoint of diagonal BD}

\mathsf{=\left(\dfrac{6+0}{2},\dfrac{2+3}{2}\right)}

\mathsf{=\left(3,\dfrac{5}{2}\right)}

\therefore\mathsf{Point\;of\;intersection\;of\;diagonals\;is\;\left(3,\dfrac{5}{2}\right)}

Similar questions