Math, asked by divyanshupasricha141, 7 months ago

If a = (√2 + 1) ÷( √2 – 1) and b = (√2 - 1) ÷( √2 + 1), then a² + ab + b² =__________.
a:-34
b:-35
c:-30
d:-33

Answers

Answered by Anonymous
140

\displaystyle\huge\purple{\underline{\underline{Question}}}

If a = (√2 + 1) ÷( √2 – 1) and b = (√2 - 1) ÷( √2 + 1), then a² + ab + b² =__________.

a:-34

b:-35

c:-30

d :- 33

\displaystyle\huge\red{\underline{\underline{Solution}}}

\sf{\underline{\green{Given}}}

The value of a =\frac{\sqrt{2}\:+\:1}{\sqrt{2}\:-\:1}

Rationalizing the denominator

\implies\:\frac{(\sqrt{2}\:+\:1)\:(\sqrt{2}\:-\:1)}{(\sqrt{2}\:+\:1)\:(\sqrt{2}\:-\:1)}

\implies\:\frac{\sqrt{2}^2\:+\:1^2}{\sqrt{2^2}\:-\:1}

The value of b =\frac{\sqrt{2}\:-\:1}{\sqrt{2}\:+\:1}

\implies\:\frac{(\sqrt{2}\:-\:1)\:(\sqrt{2}\:+\:1)}{(\sqrt{2}\:-\:1)\:(\sqrt{2}\:+\:1)}

\implies\:\frac{\sqrt{2}^2\:-\:1^2}{\sqrt{2^2}\:-\:1}

To find the value of a^2\:+\:ab\:+\:b^2

\sf{\underline{\pink{Using\: algebraic\: identities}}}

(\:x\:+\:y\:)^2\:=\:x^2\:+\:y^2\:+2xy

(\:x\:-\:y\:)(\:x+\:y\:)\:=\:x^2\:-\:y^2

\sf{\underline{\pink{Value\:of\:a}}}

\leadsto\:\frac{2\:+\:1\:+\:2\sqrt{2}}{2\:-\:1}

Equation 1

a \leadsto\:3\:+\:2\sqrt{2}

\sf{\underline{\pink{Value\:of\:b}}}

\leadsto\:\frac{2\:+\:1\:-\:2\sqrt{2}}{2\:-\:1}

Equation 2

b \leadsto\:3\:-\:2\sqrt{2}

Equation 3

ab \rightarrow\:(\:3\:+\:2\sqrt{2})(\:3\:-\:2\sqrt{2})

\rightarrow\:3^2\:-\:(\:2\sqrt{2})

\rightarrow\:9\:-\:8

\rightarrow\:1

Let's put these values in this equation ,

\implies\:a^2\:+\:ab\:+\:b^2

\implies\:(3\:+\:2\sqrt{2})\:+\:1\:+\:(3\:-2\sqrt{2})

\implies\:9\:+\:12\sqrt{2}\:+\:8\:+\:1\:+\:9\:-\:12\sqrt{2}\:+\:8

\implies\:9\:+\:8\:+\:1\:+\:9\:+\:8

{\boxed{\red{35\:is\:the\: solution}}}


vikram991: Wonderful Answer
Similar questions