Math, asked by aparnatijo, 1 year ago

if a=√2+1/√2-1 and b=√2-1/√2+1,then find the value of a²+b²-4ab

Answers

Answered by mysticd
73

Answer:

 Value \: of \:a^{2}+b^{2}-4ab=30

Step-by-step explanation:

 i)a = \frac{\sqrt{2}+1}{\sqrt{2}-1}

/*Rationalising the denominator ,we get

=\frac{(\sqrt{2}+1)(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)}

=\frac{(\sqrt{2}+1)^{2}}{(\sqrt{2})^{2}-1^{2}}

/*By algebraic identities:

i) (x+y)²=++2xy

ii) (x-y)(x+y)=-y² */

=\frac{2+1+2\sqrt{2}}{2-1}

=\frac{3+2\sqrt{2}}{1}

=3+2\sqrt{2}\:---(1)

 ii)b = \frac{\sqrt{2}-1}{\sqrt{2}+1}

/*Rationalising the denominator ,we get

=\frac{(\sqrt{2}-1)(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}

=\frac{(\sqrt{2}-1)^{2}}{(\sqrt{2})^{2}-1^{2}}

/*By algebraic identities:

i) (x-y)²=x²+y²-2xy

2xyii) (x-y)(x+y)=x²-y² */

=\frac{2+1-2\sqrt{2}}{2-1}

=\frac{3-2\sqrt{2}}{1}

=3-2\sqrt{2}\:---(2)

 iii) a-b\\=3+2\sqrt{2}-(3-2\sqrt{2})\\=3+2\sqrt{2}-3+2\sqrt{2})\\=4\sqrt{2}\:--(3)

iv)ab \\= (3+2\sqrt{2})(3-2\sqrt{2})\\=3^{2}-(2\sqrt{2})^{2}\\=9-8\\=1\:---(4)

Now,\\a^{2}+b^{2}-4ab\\=(a^{2}+b^{2}-2ab)-2ab\\=(a-b)^{2}-2ab\\=(4\sqrt{2})^{2}-2\times 1

/* From (3) and (4)*/

=32-2

=30

Therefore,

 Value \: of \:a^{2}+b^{2}-4ab=30

•••♪

Answered by mdtajanwardav12103
3

Answer:

U can see above its good explanation

Similar questions