Math, asked by AbhirVishwa0233, 9 months ago

If a^2+1/a^2=11, find the value of a^3+1/a^3

Answers

Answered by Anonymous
5

Refer to attachment:

GIVEN:

 a^{2}+ \dfrac{1}{a^{2}} =11

TO FIND:

a^{3}+\dfrac{1}{a^{3}}

ANSWER:

WE HAVE,

=> a^{2}+ \dfrac{1}{a^{2}} =11

=> a^{2}+\dfrac{1}{a^{2}} -2×a×\dfrac{1}{a}+2×a×\dfrac{1}{a}=11

=> (a) ^{2} + (\dfrac{1}{a^{2}}) -2×a×\dfrac{1}{a}+2=11

=>(a+\dfrac{1}{a})^{2}=11+2

\large\green{\boxed{(a+b) ^{2}=a^{2}+b^{2}+2ab}}

=>(a+\dfrac{1}{a})^{2}=\sqrt{13}^2

.°.a+\dfrac{1}{a}=\sqrt{13} .........,..... (1)

______________________________________

On cubing equation 1.

=>(a+\dfrac{1}{a})^{3}=(\sqrt{13})^{3}

\large\purple{\boxed{(a+b) ^{3}=a^{3}+b^{3}+3ab(a+b) }}

=> a^{3}+\dfrac{1}{a^{3}}+3×a×\dfrac{1}{a}(a+\dfrac{1}{a})=13\sqrt{13}

=>a^{3}+\dfrac{1}{a^{3}}+3\sqrt{13}=13\sqrt{13}

=>a^{3}+\dfrac{1}{a^{3}}=13\sqrt{13}-3\sqrt{13}

.°.a^{3}+\dfrac{1}{a^{3}}=10\sqrt{13}

\huge\orange{\boxed{a^{3}+\dfrac{1}{a^{3}}=10\sqrt{13}}}

Similar questions