If a^2+1/a^2=11, find the value of
(i) a^3-1/a^3 (ii) a^3+1/a^3
Answers
Step-by-step explanation:
first equation X cube minus one upon x is equal to x cube minus one upon a cube and a cube cancel it with a few the first equation answer is -1 and second a cube + 1 upon x cube 82 cancel is equal to 1 second equation answer
Answer:
(i) 36
(ii) 10√13
Solution:
Given: a² + 1/a² = 11
Solution for (i) :-
We have ;
=> a² + 1/a² = 11 ----------(1)
=> a² + 1/a² - 2 = 11 - 2 { subtracting 2 both sides }
=> a² - 2a×1/a + a² = 9
=> ( a - 1/a )² = 9
=> a - 1/a = √9
=> a - 1/a = 3 ---------(2)
Now,
=> a³ - 1/a³ = (a - 1/a)(a² + a×1/a + 1/a²)
=> a³ - 1/a³ = (a - 1/a)(a² + 1/a² + 1)
=> a³ - 1/a³ = 3(11 + 1) { using eq-(1) and (2) }
=> a³ - 1/a³ = 3×12
=> a³ - 1/a³ = 36
Solution for (ii) :-
We have ;
=> a² + 1/a² = 11 ----------(1)
=> a² + 1/a² + 2 = 11 + 2 { adding 2 both sides }
=> a² + 2a×1/a + a² = 13
=> ( a + 1/a )² = 13
=> a + 1/a = √13
=> a + 1/a = √13 --------(2)
Now,
=> a³ + 1/a³ = (a + 1/a)(a² - a×1/a + 1/a²)
=> a³ + 1/a³ = (a + 1/a)(a² + 1/a² - 1)
=> a³ + 1/a³ = √13(11 - 1) { using eq-(1) and (2) }
=> a³ + 1/a³ = √13×10
=> a³ + 1/a³ = 10√13