Math, asked by Omjeeb, 4 months ago

If (a^2+1/a^2)=14 then
(a+1/a)=?

Answers

Answered by Salmonpanna2022
0

Answer:

GIVEN, a² + 1/a² = 14.

______________________________

We know, a²+b² = (a+b)² - 2 ab

So, (a+1/a) ² - 2 = 14

=> (a+1/a) = √16 = 4

______________________________

We also know, a²+b² = (a-b)² + 2 ab

So, (a-1/a)² + 2 = 14

=> (a - 1/a) = √12

______________________________

Ultimately, a² - 1/a²

= (a + 1/a) (a - 1/a)

= 4√12

This is your answer.

Answered by Anonymous
0

GIVEN :-

 \\  \sf \:  \left(  {a}^{2} +  \dfrac{1}{ {a}^{2} }  \right) = 14 \\  \\

TO FIND :-

 \\  \sf \: a +  \dfrac{1}{a}  \\  \\

FORMULA USED :-

 \\    \bigstar\boxed{\sf \: (x +  {y)}^{2}  =  {x}^{2} +  {y}^{2}   + 2xy} \\  \\  \therefore \boxed{ \sf   \: {x}^{2}  +  {y}^{2}  = (x +  {y)}^{2}  - 2xy} \\  \\

SOLUTION :-

 \\

We know , x² + y² = (x+y)² - 2xy

In the above question ,

  • x = a
  • y = 1/a

Substituting values in the formula ,

 \\   \implies\sf \:  {a}^{2}  +  \dfrac{1}{ {a}^{2} }  =  { \left( a +  \dfrac{1}{a} \right)}^{2}  - 2( \cancel{a})  \left( \dfrac{1}{ \cancel{a}}  \right) \\   \\  \\  \implies\sf \: 14 =  { \left(a +  \dfrac{1}{a}  \right)}^{2}  - 2 \\  \\  \\  \implies \sf \:  { \left(a + \dfrac{1}{a}   \right)}^{2}  = 14 + 2 \\

 \\   \implies\sf \:  { \left(a +  \dfrac{1}{a}  \right)}^{2}  = 16 \\   \\

Taking root , we get...

 \\   \implies\sf \: a +  \dfrac{1}{a}  =  \sqrt{16}  \\  \\  \\   \implies\boxed{ \bf \: a +  \dfrac{1}{a} = 4 } \\  \\

MORE IDENTITIES :-

 \\

 \boxed{ \tt\:(x -  {y})^{2} =  {x}^{2}   +  {y}^{2}    -  2xy} \\   \\ \boxed{ \tt \: (x + y)(x - y) =  {x}^{2}  -  {y}^{2} } \\  \\  \boxed{ \tt \: (x + a)(x + b) =  {x}^{2} + (a + b)x + ab } \\

Similar questions