Math, asked by VHarshal, 4 months ago

if a^2 + 1/ a^2 =23, find the value of (a + 1/a)​

Answers

Answered by Asterinn
5

  \rm \rightarrow { \bigg( {a}+  \dfrac{1}{a} \bigg)  }^{2}  =  {a}^{2}  +  {( \dfrac{1}{a} )}^{2}  +( 2 \times a \times \dfrac{1}{a}) \\ \\   \\ \rm \rightarrow { \bigg( {a}+  \dfrac{1}{a} \bigg)  }^{2}  =  \rm   {a}^{2}  +  {( \dfrac{1}{a} )}^{2}    +2  \\  \\ \rm it \: is \: given \: that \: {a}^{2}  +  { \dfrac{1}{ {a}^{2} } }   = 23 \\  \\\\ \rm \rightarrow { \bigg( {a}+  \dfrac{1}{a} \bigg)  }^{2}  =  \rm   23+2 \\\\ \rm \rightarrow { \bigg( {a}+  \dfrac{1}{a} \bigg)  }^{2}  =  \rm   25\\\\ \rm \rightarrow { \bigg( {a}+  \dfrac{1}{a} \bigg)  }  =  \rm    \sqrt{25} \\\\ \rm \rightarrow { \bigg( {a}+  \dfrac{1}{a} \bigg)  }  =  \rm    \pm 5

Answer : ±5

Learn more :

\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{minipage}}

Similar questions