If a^2 + 1/a^2 = 47 find a^3 + 1/a^3
Answers
Answered by
6
Step-by-step explanation:
a^2 + 1/a^2 =47
(a+1/a)^2 =47
a^2 + 1/a^2 + 2*a*1/a =47
a and 1/a will be cut
a^2 + 1/a^2 =47 + 2 = 49
a + 1/a = 7
a^3 +1/a ^3 = 7^3
a^3 + 1/a^3 + 3ab = 343
a^3 + 1/a^3 + 3 * a^3 * 1/a^ 3 = 343
a and 1/a will be 7 as we do in first
a^3 +1/a^3 = 343 - 7*3
a^3 +1/a^3 = 322
may be it is helpful!!!!
Answered by
0
Answer:
322
Step-by-step explanation:
a^2 + 1/a^2 =47
(a+1/a)^2 =47
a^2 + 1/a^2 + 2*a*1/a =47
a and 1/a will be cut
a^2 + 1/a^2 =47 + 2 = 49
a + 1/a = 7
a^3 +1/a ^3 = 7^3
a^3 + 1/a^3 + 3ab = 343
a^3 + 1/a^3 + 3 * a^3 * 1/a^ 3 = 343
a and 1/a will be 7 as we do in first
a^3 +1/a^3 = 343 - 7*3
a^3 +1/a^3 = 322
Similar questions