if a^2+1/a^2 is equal to 11 then find a^3+1/a^3
Answers
Answered by
0
Ans:- a^2+1/a^2 = 11
= (a + 1/a)^2 - 2×a×1/a = 11
= (a + 1/a)^2 = 13
= a + 1/a = √13
now,
a^3+1/a^3 = (a + 1/a)(a^2 - a×1/a + 1/a^2)
= √13(11 - 1)
= 10√13
OR
(a + b)^3 = a^3 + b^3 + 3ab(a + b)
(a + 1/a)^3 = a^3 + 1/a^3 + 3×a×1/a(a + 1/a)
(√13)^3 = a^3 + 1/a^3 + 3×√13
13√13 = a^3 + 1/a^3 + 3√13
a^3 + 1/a^3 = 13√13 - 3√13 = 10√13
here is your answer
hope it will help you
Similar questions