Math, asked by sukritijoshi18, 2 days ago

If A ( -2 ,1 ), B ( 2, 3 ) and C ( 1, 1 ), find the equation of the line which bisects the angle B (that is ∠).​

Answers

Answered by MysticSohamS
0

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: find  :  \\ equation \: of \: line \: bisecting \: ∠ABC \\  \\ so \: let \: the \: line \: which \: bisects \\ ∠ABC \:  \: be \:  \: BP \\  \\ so \: since  \\ \: BP \: bisects \: ∠ABC \\  \\ by \: angle \: bisector \: property \\ we \: have \\  \\  \frac{AB}{BC}  =  \frac{AP }{  CP}  \:  \:  \:  \:  \:  \:  \: (1)

so \: we \: know \: that \\ distance \: formul a \: is \: given \: by \\  \\  \sqrt{(x2 - x1) {}^{2} + (y2 - y1) {}^{2}  }  \\  \\ so \: thus \: then  \\ \\ d(AB) =  \sqrt{(2 - ( - 2)) {}^{2}  + (3 - 1) {}^{2} }  \\  \\  =  \sqrt{(2 + 2) {}^{2} + (2) {}^{2}  }  \\  \\  =  \sqrt{(4) {}^{2} + (2) {}^{2}  }  \\  \\  =  \sqrt{16 + 4 }  \\  \\  =  \sqrt{20}  \\  \\ AB = 2 \sqrt{5} . \\  \\ similarly \\  \\ d(BC)  = \sqrt{(1 - 2) {}^{2} + (1 - 3) {}^{2}  }  \\  \\  =  \sqrt{( - 1) {}^{2}  + ( - 2) {}^{2} }  \\  \\  =  \sqrt{1 + 4}  \\  \\BC  =  \sqrt{5}

now \: dividing \: AB \:  \: and \:  \: BC \\ we \: get \\  \\  \frac{AB}{BC}  =  \frac{2 \sqrt{5} }{ \sqrt{5} }  \\  \\   \frac{AB}{BC} =  \frac{2}{1}  \\  \\ so \: thus \: then \\  \\  \frac{AP  }{  CP}  =  \frac{2}{1}  \:  \:  \:  \:  \:  \:  \:  \:  \: from \: (1)

so \: thus \\   P \:  \: divides \:  \: seg \:AC  \: internally \\ in \: ratio \:  \: 2 : 1 \\  \\ so \: let \: then \\ AP   : CP = m : n = 2 : 1 \\  \\

we \: know \: that \\ section \: formula \: for \: internal \\ division \:  \: is \: given \: by \\  \\ x =  \frac{mx2 + nx1}{m + n}  \:  \:     ; \:  \: y =  \frac{my2 + ny1}{m + n}  \\  \\ so \: hence \\  \\       P =  \frac{(2 \times 1) + 1 \times ( - 2)}{(2 + 1)}   \:  \:    ;    =  \frac{(2 \times 1) + (1 \times 1)}{2 + 1}  \\  \\   =  \frac{2 - 2}{3}  \:  \:     ;    =  \frac{2 + 1}{3}  \\  \\  =  \frac{0}{3}  \:  \:     ;    =  \frac{3}{3}  \\  \\       P = (x,y) = (0,1)

so \: thus \: then \\ let \: here \\ (x1,y1) = (2,3) \\ (x2,y2) = (0,1) \\  \\ we \: know \: that \\ two \: points \: equation \: of \: straight \\ line \: is \: given \: by \\  \\  \frac{x - x1}{x1 - x2}  =  \frac{y - y1}{y1 - y2}  \\  \\  \frac{x - 2}{2 - 0}  =  \frac{y - 3}{3 - 1}  \\  \\  \frac{x - 2}{2}  =  \frac{y - 3}{2}  \\  \\ x - 2 = y - 3 \\  \\ x - y + 1 = 0 \\  \\ or \\  \\ x - y =  - 1

hence \: the \:  \: equation \: of \: line \:  \\ bisecting \:  \: ∠ABC \:  \: is \\ x - y + 1 = 0

Attachments:
Similar questions