Math, asked by princebhnwl2810, 1 year ago

if a(2 -1) b(3 4) c(-2 3) d(-3 -2) be four points in a plane show that ABCD is a rhombus

Answers

Answered by MaheswariS
7

Answer:

ABCD is a rhombus

Step-by-step explanation:

A(2 ,-1), B(3, 4) C(-2,3) D(-3,-2)

AB=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

AB=\sqrt{(2-3)^2+(-1-4)^2}

AB=\sqrt{1+25}

\bf{AB=\sqrt{26}}

BC=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

BC=\sqrt{(3+2)^2+(4-3)^2}

BC=\sqrt{25+1}

\bf{BC=\sqrt{26}}

CD=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

CD=\sqrt{(-2+3)^2+(3+2)^2}

CD=\sqrt{1+25}

\bf{CD=\sqrt{26}}

AD=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}

AD=\sqrt{(2+3)^2+(-1+2)^2}

AD=\sqrt{25+1}

\bf{AD=\sqrt{26}}

\implies\:AB=BC=CD=AD

All sides are equal

But,

AB^2+BC^2\neq\:AC^2

\angle{B}\neq90

\implies\:\text{ABCD is not a square}

Hence, ABCD is a rhombus

Answered by priyalmittal05
1

ABCD is a rhombus

A(2 ,-1), B(3, 4) C(-2,3) D(-3,-2)

All sides are equal

But,

Hence, ABCD is a rhombus

Step-by-step explanation:

Similar questions