Math, asked by KanukuntlaSahana, 2 months ago


If A(-2,-1), B(a,0), C(4, b) & D(1,2) are the vertices of a parallelogram, find the
values of a and b.

Answers

Answered by BrainlyWithNeha
1

Answer:

\underline{\bigstar{\sf\ Given:-}}

Vertices of a parallelogram =

A(-2,-1)

B(a,0)

C(5,b)

D(1,2)

\underline{\bigstar{\sf\ To\:Find:-}}

Values of a and b.

\underline{\bigstar{\sf\ Solution:-}}

Diaganols of parallelogram bisect each pther at O.

Mid point of AC = Mid point of BD

 \frac{x1 + x2}{2},\frac{y1 + y2}{2}  = \frac{x1 + x2}{2},\frac{y1 + y2}{2}  \\  \\  \frac{ - 2 + 4}{2} ,\:  \frac{ - 1 + b}{2}  =  \frac{a + 1}{2} ,\:  \frac{0 + 2}{2}  \\  \frac{2}{2} ,\:  \frac{ - 1 + b}{2}  =  \frac{a + 1}{2} , \:  \frac{2}{2}  \\ 1 ,\:  \frac{ - 1 + b}{2}  =  \frac{a + 1}{2} , \: 1 \\ ⇒\frac{ - 1 + b}{2}  = 1 \\  - 1 + b = 2 \\ b = 2 + 1 \\ ⇒b = 3 \\  \\  ⇒\frac{a + 1}{2}  = 1 \\ a + 1 = 2 \\ a = 2 - 1 \\ ⇒a = 1

,

Attachments:
Similar questions