Math, asked by abidasalm99, 11 months ago

If A (-2, -1), B (k, 0), C (4, P) and (1, 2) are the vertices of a
parallelogram find the value of K and P.​

Answers

Answered by Rythm14
70

Question :-

If A(-2, -1), B(k, 0), C(4, P) and D(1, 2) are the vertices of a parallelogram find the value of K and P.

Answer :-

k = 1 and P = 3

__________________________

Step by step explaination :-

We are given the coordinates,

  • A(-2, -1)
  • B(k, 0)
  • C(4, P)
  • D(1, 2)

In a parallelogram, diagonals bisect each other.

•°• Midpoint of AC = Midpoint of BD

----> AC = BD

Using midpoint formula,

\rightarrow (\frac{ - 2 + 4}{2}, \:  \frac{ - 1 + p}{2} ) = (\frac{ k + 1}{2}, \: \frac{ 0 + 2}{2}) \\ \rightarrow \: (\frac{ 2 }{2}, \frac{- 1 + p}{2} ) = (\frac{ k + 1}{2}, \: \frac{ 2}{2} )  \\ \\ \sf \:  \underline{\: (equating \: x \: coordinates)}  \\  \rightarrow \:  \frac{2}{2}  =  \frac{k + 1}{2}  \\  \rightarrow \: 2 = k + 1 \\  \rightarrow \: 2 - 1 = k \\  \rightarrow \:  1 = k \\  \therefore \:  k \:  =  1 \\ \\ \sf \underline{\: (equating \: y \: coordinates)} \\  \rightarrow \:  \frac{2}{2}  =  \frac{ - 1 + p}{2}  \\  \:  \rightarrow \: 2 =  - 1 + p \\  \rightarrow \: 3 = p \\  \therefore \: p = 3

Answered by Anonymous
16

Answer:

Value of P = 3

and of k = 1

Step-by-step explanation:

We are given the Vertices of the parallelogram,

•A(-2,-1)

•B(k,0)

•C(4,P)

•D(1,2)

We know that the diagonals of a parallelogram bisect each other ,

So

Mid point of AC = Mid point of BD

 \implies( \frac{4 - 2}{2}  ,\frac{ P   - 1}{2} ) = ( \frac{1 + k}{2} , \frac{2 + 0}{2} ) \\  \implies( \frac{2}{2} , \frac{P - 1}{2} ) = ( \frac{1 + k}{2} , \frac{2}{2} ) \\  \implies( 1, \frac{P - 1}{2} ) = ( \frac{1 + k}{2} ,1)

Now by equating the values we have

1 =  \frac{1 + k}{2}  \\  \implies2 = 1 + k \\  \implies k = 1

And for the other one

 \frac{</u></strong><strong><u>P</u></strong><strong><u> - 1}{2}  = 1 \\  \implies </u></strong><strong><u>P</u></strong><strong><u> - 1 = 2 \\  \implies </u></strong><strong><u>P</u></strong><strong><u> = 3

Similar questions