Math, asked by aryams12, 9 months ago

if a = √2+1, find the value of (a-1/a​)^2

Answers

Answered by sumbalshahz1710
0

Answer:

Step-by-step explanation:

A=√2+1

1/A=1/(√2+1)

By rationalising

1/(√2+1) *(√2-1)/(√2-1)

(√2-1)/(√2^2-1^2)

√2-1/(2-1)

√2-1

Answered by abhinavsingh128
1

Answer:

SOLUTION

a=√2+1

1/a=1/(√2+1 )

=

  \frac{1}{a}  = \frac{1}{ \sqrt{2 } + 1 }  \times   \frac{ \sqrt{2} - 1 }{ \sqrt{2} - 1 }  =   \frac{ \sqrt{2} - 1 }{ ({ \sqrt{2})  } ^{2}  -  {1}^{2} }    =   \frac{ \sqrt{2}  - 1}{2 - 1}  = \sqrt{2}  - 1

 { (a -  \frac{1}{a} ) }^{2}  =     {(\sqrt{2}  +  1 - ( \sqrt{2}  -  1 ) )}^{2}  =  {( \sqrt{2}  + 1 -  \sqrt{2}  + 1  })^{2}  =  {(1 + 1)}^{2}  = {2}^{2}  = 4HOPE IT HELPS

THEANSWER IS 4

Similar questions