Math, asked by riyu68, 1 year ago

if a =√2+1 , find the value of (a-1/a2)2​

Answers

Answered by BrainlyConqueror0901
5

{\bold{\underline{\underline{Answer:}}}}

{\bold{\implies ( {a -  \frac{1}{a}})^{2}=1}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{given : }  \\  \implies a =  \sqrt{2}  + 1 \\  \\  \underline \bold{to \: find: }  \\  \implies ( {a -  \frac{1}{a} })^{2}  = ?

• According to given question :

 \bold{Using \: identity \to } \\ \bold{  ({a - b})^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab} \\   \\  \bold{For \: finding \: values : } \\  \implies ( {a -  \frac{1}{a} })^{2}  =  ({a})^{2}   +  (\frac{1}{a})^{2}  - 2 \times  \cancel{a} \times  \frac{1}{ \cancel{a}}  \\  \\   \implies ( {a -  \frac{1}{a} })^{2} =  ({ \sqrt{2}  + 1})^{2}  +  (\frac{1}{ \sqrt{2} + 1 })^{2}  - 2 \\  \\ \implies ( {a -  \frac{1}{a} })^{2} =  ({ \sqrt{2} })^{2}  +  {1}^{2}  + 2 \sqrt{2}  +  \frac{1}{ \sqrt{2}^{2}  +  {1}^{2}  + 2 \sqrt{2}  }  - 2 \\  \\ \implies ( {a -  \frac{1}{a} })^{2} = 2 + 1 + 2 \sqrt{2}  +  \frac{1}{2 + 1 + 2 \sqrt{2} }  - 2 \\  \\ \implies ( {a -  \frac{1}{a} })^{2} = 3 + 2 \sqrt{3}  +  \frac{1}{3 +  2\sqrt{2} }  \times  \frac{3 -  2\sqrt{2} }{3 - 2 \sqrt{2} }  - 2 \\  \\ \implies ( {a -  \frac{1}{a} })^{2} = 3 + 2 \sqrt{2}  +  \frac{3 - 2 \sqrt{2} }{9 - 4 \times 2}  - 2 \\  \\  \implies ( {a -  \frac{1}{a} })^{2} =  3 + 2 \sqrt{2} +  \frac{3 - 2 \sqrt{2} }{9 - 8}  - 2 \\  \\  \implies ( {a -  \frac{1}{a} })^{2} = 3 +  \cancel{2 \sqrt{2}}  + 3   \cancel{- 2 \sqrt{2}}  - 2 \\  \\  \implies ( {a -  \frac{1}{a} })^{2} = 3 - 2 \\  \\  \bold{\implies ( {a -  \frac{1}{a} })^{2} = 1}

Answered by kdi
0

Answer:

(a-1/a2)2=1

Step-by-step explanation:

if a =√2+1 , find the value of (a-1/a2)2

Similar questions