Math, asked by ssaifahmad8820, 17 days ago

if a= 2 + 2 ^ (2/3) + 2 ^ (1/3) prove that a ^ 3 - 6a ^2 + 6a - 2 = 0​

Answers

Answered by omkar721880
0

Answer:

Given that x = 2 + 2^(2/3) + 2^(1/3)

so x - 2 = 2^(2/3) + 2^(1/3)

=(x-2)^3 = [2^(2/3)+2^(1/3)]^3

use (a-b)^3= a^3 - b^3 - 3ab(a-b)

and (a+b)^3= a^3 + b^3 + 3ab(a+b) formulae.

or x^3 - 8 - 6x(x-2) = 2^2 + 2^1 + 3*[2^{(2/3)+(1/3)}[2^(2/3)+2^(1/3)

or x^3 - 8 - 6x^2 + 12x = 4 + 2 + 6(x-2)

or x^3 - 8 -6x^2 + 12x = 6 + 6x - 12

or x^3 - 6x^2 +6x = 2

Similar questions