If A(-2,2,3) and B(13,-3,13) are two points .find the locus of a point p which moves in such a way that 3PA=2PB
Answers
Answered by
5
We have to find the locus of a point P which moves in such a way that 3PA = 2PB , where A (-2, 2, 3) and B(13, -3, 13)
Solution : let point P = (x , y , z)
distance between P and A, PA = √{(x + 2)² + (y - 2)² + (z - 3)²}
distance between P and B, PB = √{(x - 13)² + (y + 3)² + (z - 13)²}
a/c to question,
3PA = 2PB
⇒9PA² = 4PB²
⇒9[(x + 2)² + (y - 2)² + (z - 3)²] = 4[(x - 13)² + (y + 3)² + (z - 13)²]
⇒9(x + 2)² - 4(x - 13)² + 9(y - 2)² - 4(y + 3)² + 9(z - 3)² - 4(z - 13)² = 0
⇒5(x² + y² + z² + 28x - 12y + 10z - 247) = 0
⇒x² + y² + z² + 28x - 12y + 10z - 247 = 0
Therefore the locus of the point p which moves in such a way that 3PA = 2PB, is x² + y² + z² + 28x - 12y + 10z - 247 = 0
Similar questions