If a=2√2+√7 , then the value of a-1/a please tell me step by step
Answers
Answered by
3
Step-by-step explanation:
Given :-
a = 2√2+√7
To find :-
Find the value of a -(1/a) ?
Solution :-
Given that
a = 2√2+√7
=> a = √(2²×2)+√7
=> a = √(4×2)+√7
=> a = √8+√7
=> 1/a = 1/(√8+√7)
The denominator = √8+√7
The Rationalising factor of √8+√7 is √8-√7
On Rationalising the denominator then
=> 1/a = [1/(√8+√7]×[(√8-√7)/(√8-√7)]
=> 1/a = [1(√8-√7)]/[(√8+√7)(√8-√7)]
=> 1/a = (√8-√7)/[(√8+√7)(√8-√7)]
We know that
(a+b)(a-b) = a²-b²
Where a = √8 and b = √7
=> 1/a = (√8-√7)/[(√8)²-(√7)²]
=> 1/a = (√8-√7)/(8-7)
=> 1/a = (√8-√7)/1
=> 1/a = √8-√7
Now,
The value of a-(1/a)
= (√8+√7)-(√8-√7)
=> √8+√7-√8+√7
=> (√8-√8)+(√7+√7)
=> 0 +2√7
=> 2√7
Therefore, a-(1/a) = 2√7
Answer:-
The value of a-(1/a) for the given problem is 2√7
Used formulae:-
→ The Rationalising factor of√a+√b is √a-√b
→ (a+b)(a-b) = a²-b²
Similar questions