Math, asked by jnkook9492, 3 months ago

if a^2 + 2bc, b^2 + 2ac,c^2+2ab are in A.P show that 1/(b-c),1/(c-a),1/(a-b) are in A.P​

Answers

Answered by WildCat7083
6

 \sf \: 1/ b-c , 1/ c-a , 1/ a-b  \\ \sf \:  are \:  in \:  AP  \\  \sf \: 2/ c-a = 1/a-b + 1/ b-c \\  \sf \:  \sf \: = b-c + a-b / (a-b)(b-c)\\   \sf \: 2/ c-a = (a-c )/ (a-b )(b-c) \\  \sf \: 2(a - b)(b - c) = (c - a) {}^{2}  \\  \sf \: 2ab - 2ac - 2 {b}^{2}  + 2bc =  { - c}^{2}  { - a}^{2}  + 2ac \\  \sf \: 2( {b}^{2}  + 2ac) = ( {c}^{2}  + 2ab +  {a}^{2}  + 2bc) \\  \sf \: which \:  means  \\  \sf \:  {a}^{2}  - 2bc, {b}^{2}  + 2ac , {c}^{2}  + 2ab\\  \sf \: which \:  is  \: true \\  \\

________________________

 \sf \: @WildCat7083

Similar questions