Math, asked by nehakant7, 1 year ago

If a=2 - 3^1/2 then find (a - 1/a)^3​

Answers

Answered by mysticd
0

Answer:

\left(a-\frac{1}{a}\right)^{3}=-24\sqrt{3}

Step-by-step explanation:

Given a = 2-3 ---(1)

 \frac{1}{a}= \frac{1}{2-\sqrt{3}}\\=\frac{(2+\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}\\=\frac{(2+\sqrt{3})}{2^{2}-(\sqrt{3})^{2}}\\=\frac{(2+\sqrt{3})}{4-3}\\=\frac{(2+\sqrt{3})}{1}\\=2+\sqrt{3}

a-\frac{1}{a}\\=2-\sqrt{3}-(2+\sqrt{3})\\=2-\sqrt{3}-2-\sqrt{3}\\= -2\sqrt{3}

Now,\\\left(a-\frac{1}{a}\right)^{3}\\=(-2\sqrt{3})^{3}\\=-24\sqrt{3}

Therefore,

\left(a-\frac{1}{a}\right)^{3}=-24\sqrt{3}

•••♪

Similar questions