Math, asked by anubhavsingh8960, 11 months ago

If a= 2-√3, and b=1/a, then find the value of a²+b²

Answers

Answered by iqra14tahreem
0

Answer:

hope u understand the answer

Attachments:
Answered by payalchatterje
0

Answer:

Required value of a²+b² is 14.

Step-by-step explanation:

Given,

a = 2 -  \sqrt{3} and b =  \frac{1}{a} .....(1)

Here we want to find value of

 {a}^{2}  +  {b}^{2}

We are putting value of a in equation (1),

b =  \frac{1}{2 -  \sqrt{3} }  \\  =  \frac{2 +  \sqrt{3} }{(2 -  \sqrt{3})(2 +  \sqrt{3})  }  \\  =  \frac{2 +  \sqrt{3} }{ {2}^{2}  -  { \sqrt{3} }^{2} }  \\  =  \frac{2 +  \sqrt{3} }{4 - 3} \\  =  \frac{2 +  \sqrt{3} }{1}   \\  = 2 +  \sqrt{3}

Now,

 {a}^{2}  +  {b}^{2}  \\  =  {(2 -  \sqrt{3}) }^{2}  +  {(2 +  \sqrt{3}) }^{2}  \\  =  {2}^{2}  - 2.2. \sqrt{3}  +  { \sqrt{3} }^{2}  +  {2}^{2}  + 2.2. \sqrt{3}  +  { \sqrt{3} }^{2}  \\ =  4 - 4 \sqrt{3}  + 3 + 4 + 4 \sqrt{3}  + 3 \\  = 4 + 3 + 4 + 3 \\  = 14

Here applied formula is  {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}

and  {(x - y)}^{2}  =  {x}^{2}  - 2xy +  {y}^{2}

This is a problem of Algebra.

Some important Algebra formulas.

(a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

a² − b² = (a + b)(a − b)

a² + b² = (a + b)² − 2ab

a² + b² = (a − b)² + 2ab

a³ − b³ = (a − b)(a² + ab + b²)

a³ + b³ = (a + b)(a² − ab + b²)

Know more about Algebra,

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

Similar questions