If a(2-√3)=b(2+√3)=1 then find the value of a square minus b square is equal to what
Answers
Answer:
8 √3
Step-by-step explanation:
Given----> a ( 2 - √3 ) = b ( 2 + √3 ) = 1
To find-----> Value of ( a² - b² ) .
Solution----> ATQ,
a ( 2 - √3 ) = b ( 2 + √3 ) = 1
So , a ( 2 - √3 ) = 1
Multiplying both sides by ( 2 + √3 ) , we get,
=> a ( 2 - √3 ) ( 2 + √3 ) = 1 ( 2 + √3 )
=> a { ( 2 )² - ( √3 )² } = ( 2 + √3 )
=> a ( 4 - 3 ) = ( 2 + √3 )
=> a ( 1 ) = ( 2 + √3 )
=> a = ( 2 + √3 )
Similarly , b = ( 2 - √3 )
Now, a² = ( 2 + √3 )²
We know that ,
( a + b )² = a² + b² + 2ab , applying it , we get,
= ( 2 )² + ( √3 )² + 2 ( 2 ) ( √3 )
= 4 + 3 + 4 √3
= 7 + 4√3
b² = ( 2 - √3 )²
( a - b )² = a² + b² - 2ab
= ( 2 )² + ( √3 )² - 2 ( 2 ) ( √3 )
= 4 + 3 - 4 √3
= 7 - 4√3
a² - b² = ( 7 + 4√3 ) - ( 7 - 4√3 )
a² - b² = 7 + 4√3 - 7 + 4√3
= 8 √3
Answer:
if a=3 and b=-1, then the value of is (a+b) b is