Math, asked by ps399004, 1 year ago

If a = 2+ √3, find the value of a -1÷a​

Answers

Answered by rishu6845
0

Answer:

23

Step-by-step explanation:

Given-----> a = 2 + √3

To find ------> ( a - 1 / a )

Solution------> a = 2 + √3

1 / a = 1 / ( 2 + √3 )

Multiplying in numerator and denominator by conjugate of denominator which is ( 2 - √3 ) .

=> 1 / a = ( 2 - √3 ) / ( 2 + √3 ) ( 2 - √3 )

We have an identity ,

a² - b² = ( a + b ) ( a - b ) , applying it in denominator , we get,

= ( 2 - √3 ) / ( 2 )² - ( √3 )²

= ( 2 - √3 ) / ( 4 - 3 )

= ( 2 - √3 ) / 1

=> 1 / a = ( 2 - √3 )

Now,

a - 1 / a = ( 2 + √3 ) - ( 2 - √3 )

= 2 + √3 - 2 + √3

+2 and -2 cancel out each other, and we get,

=> a - 1 / a = 2√3

Answered by shivamsingh54
0

your question:

If a = 2+ √3, find the value of a -1÷a

answer with step by step explanation:

according to the question a is equal to 2 + root 3

a=2+√3

then,

a -1÷a = (2+√3) - 1 ÷ (2 +√3)

(2 +  \sqrt{3} ) -  \frac{1}{(2 +  \sqrt{3} )}  \\  =  \frac{  {(2 +  \sqrt{3}) }^{2}  - 1}{(2 +  \sqrt{3} )}  \\  =   \frac{ {2}^{2}  +  { \sqrt{3} }^{2}  + 2 \times 2 \times  \sqrt{3}  - 1}{(2 +  \sqrt{3}) }  \\   =  \frac{4 + 3 + 4 \times  \sqrt{3} - 1 }{(2 +  \sqrt{3} )}  \\  =  \frac{7 - 1 + 4 \times  \sqrt{3} }{(2 +  \sqrt{3} )}  \\  =  \frac{6 + 4 \times1.7320508076}{(2 +  \sqrt{3} )}  \\  =  \frac{6 +6.9282032304}{(2 +  \sqrt{3}) }  \\  =  \frac{12.9282032304}{(2 +  \sqrt{3}) }  \\  = 1.8564064606

hence,the value of a -1÷a = 1.8564064

I hope it will helps you!

please mark this as brainliest.

please follow me!

thank you!

Similar questions