If a = 2 + √3, find the value of
a -1/a
Answers
Answered by
2
Answer:
2√3
Step-by-step explanation:
= > a = 2 + √3
= > 1/a = 1/( 2 + √3 )
On RHS divide as well as multiply by 2 - √3:
= > 1/a = ( 2 - √3 ) / ( 2 + √3 )( 2 - √3 )
= > 1/a = ( 2 - √3 ) / ( 2^2 - √3^2 )
= > 1/a = ( 2 - √3 ) / ( 4 - 3 )
= > 1/a = ( 2 - √3 ) / 1
= > 1/a = 2 - √3
Hence,
= > a - 1/a
= > 2 + √3 - ( 2 - √3 )
= > 2 + √3 - 2 + √3
= > √3 + √3
= > 2√3
Answered by
2
Answer:
→ a = 2 + √3
Multiply and divide RHS by 2 - √3
Using ( a + b )( a - b ) = a² - b²
Hence,
a - 1/a = 2 + √3 - ( 2 - √3 ) = 2 + √3 - 2 + √3 = 2√3
Similar questions