Math, asked by sukhmani262005, 1 year ago

if a = 2+√3 find the value of a-1/a and a²+1/a²
who will gave me the correct answer i will mark as brainliest​

Answers

Answered by Anonymous
66

Solution :-

a = 2 + √3

Finding the value of 1/a

1/a = 1/(2 + √3)

Rationalise the denomiator

= 1/(2 + √3) * (2 - √3)/(2 - √3)

= {2 - √3}/{2² - (√3)²}

= (2 - √3)/(4 - 3)

= (2 - √3)/1

i.e 1/a = 2 - √3

Finding the value of a - 1/a

a - 1/a = 2 + √3 - (2 - √3)

= 2 + √3 - 2 + √3

= 2√3

i.e a - 1/a = 2√3

Finding the value of a² + 1/a²

a - 1/a = 2√3

Squaring on both sides

⇒ (a - 1/a)² = (2√3)²

⇒ a² + (1/a)² - 2(a)(1/a) = 4(3)

Since (x - y)² = x² + y² - 2xy

⇒ a² + 1/a² - 2 = 12

⇒ a² + 1/a² = 12 + 2

a² + 1/a² = 14

Answered by Anonymous
55

Answer:-

a {}^{2}  +  \frac{1}{a}   = 14

Further Explanation

a = 2 +  \sqrt{3}

Here, we need to find value of 1/a

 =  >  \frac{1}{a}  =   \frac{1}{(2 +  \sqrt{3}) }

 =  >   \frac{1}{(2 +  \sqrt{3} )}...... \frac{(2 -  \sqrt{3}) }{(2 -  \sqrt{3}) }

 =  >  \frac{(2 -  \sqrt{3}) }{(2 {}^{2}  -  \sqrt{3} {}^{2}  )}

 =  >  \frac{(2 -  \sqrt{3}) }{(4 - 3)}

 =  >  \frac{1}{a}  = 2 -  \sqrt{3}

Now,

 =  >  \frac{a - 1}{a}  = 2 +  \sqrt{3}  - (2 -  \sqrt{3} )

 = >  2 +  \sqrt{3}  - 2 +  \sqrt{3}

 = >  2 \sqrt{3}  \\  =  >  \frac{ - 1}{a}  = 2 \sqrt{3}

Squaring both sides

 =  >  \frac{a - 1}{a {}^{2} }  = 2 \sqrt{ 3 {}^{2} }

 =  > a {}^{2}  + ( \frac{1}{a} ) {}^{2}   \\  =  > 2(a) \frac{1}{a}  =  \frac{4}{3}

 =  > a {}^{2}  +  \frac{1}{a}  {}^{2} - 2 = 10

 =  > a {}^{2}  +   \frac{1}{a {}^{2} }  = 12 + 2

 = >  a {}^{2}  +  \frac{1}{a {}^{2} }   = 14

Similar questions