Math, asked by arjun1932, 9 months ago

if a =2+√3 find the value of a³+1/a³​

Answers

Answered by Anonymous
127

\huge\sf\red{\underline{\underline{Given}}}\::

\begin{cases}\sf\gray{a \ = \ 2  \ + \  \sqrt{3} }\end{cases}

\huge\sf\blue{\underline{\underline{To\:Find}}}\::

\begin{cases}\sf\gray{The\ value\ of  \ : \ a^3+\dfrac{1}{a^3} }\end{cases}

\huge\sf\pink{\underline{\underline{Solution}}}\::

\sf\underline\orange{Firstly \  let \ us \  calculate \ a^3}

{\sf{\orange{a^3=(2+\sqrt{3} )^3}}}\\\\ \mapsto\:\:{\sf{\purple{ a^3=(2)^3 + (\sqrt{3} )^3 + 3 \times 2 \times \sqrt{3}  (2+\sqrt{3} )}}}\\\\\mapsto\:\:{\sf{\green{  a^3=8+3\sqrt{3}+6\sqrt{3}(2+\sqrt{3} )  }}}\\\\\mapsto\:\:{\sf{\purple{  a^3=8+3\sqrt{3}+(6\sqrt{3}\times 2)+(6\sqrt{3}\times\sqrt{3}  )  }}}\\\\\mapsto\:\:{\sf{\green{  a^3=8+3\sqrt{3} +12\sqrt{3} +18}}}\\\\\mapsto\:\:{\sf{\purple{  a^3=26+15\sqrt{3} }}}

\sf\orange{Now \ calculating \ \dfrac{1}{a^3}}

\displaystyle\mapsto\:\:{\sf{\purple{  \frac{1}{a^3}=\frac{1}{26+15\sqrt{3}}  }}}\\\\\displaystyle\mapsto\:\:{\sf{\green{  \frac{1}{a^3}=\frac{26-15\sqrt{3}}{(26+15\sqrt{3})(26-15\sqrt{3})}  }}}\\\\\displaystyle\mapsto\:\:{\sf{\purple{  \frac{1}{a^3}= \frac{26-15\sqrt{3}}{(26)^2-(15\sqrt{3})^2} }}}\\\\\displaystyle\mapsto\:\:{\sf{\green{  \frac{1}{a^3}= \frac{26-15\sqrt{3}}{676-675} }}}\\\\\displaystyle\mapsto\:\:{\sf{\purple{  \frac{1}{a^3}= \frac{26-15\sqrt{3}}{1} }}}\\\\

\displaystyle\mapsto\:\:{\sf{\green{  \frac{1}{a^3}= 26-15\sqrt{3}  }}} \\\\

\mapsto\:\:{\sf{\purple{ a+ \frac{1}{a^3}=26+15\sqrt{3}+(26-15\sqrt{3})  }}} \\\\ \mapsto\:\:{\sf{\green{   a+ \frac{1}{a^3}=26+15\sqrt{3}+26-15\sqrt{3}}}} \\\\ \mapsto\:\:{\boxed{\sf{\pink{   a+ \frac{1}{a^3}=52}}}}

Similar questions