If a= 2+√3,find the value of a3+1/a3
Answers
Answered by
3
Answer:
Given:
- a = 2+√3
- to find a³ + 1/a³
Solving Question:
we are given the value of 'a' to find a³ + 1/a³ first, we have to find 1/a and then cube it.
Solution:
Hence, a = 2+√3 and 1/a = 2-√3
Then, cube it
⇒ a³ + 1/a³
⇒ (2+√3)³ + (2-√3)³
⇒ 2³ + (√3)³ +3*2*√3(2+√3) + 2³ - (√3)³ - 3*2*√3 (2-√3) [ ∵ (x+y)³ = x³ +y³+3xy(x+y) and (x-y)³ = x³ -y³ -3xy(x-y) ]
cancel +(√3)³ and -(√3)³
⇒ 8 +6√3(2+√3) +8- 6√3(2-√3)
⇒16 + 12√3 +18 -12√3+18
⇒ 16 + 18+18
⇒ 52
Therefore, the value of a³ + 1/a³ = 52
Answered by
3
a=2+√3
Rationalise it with 2+√3
Now
.
As we know
(a+b)³=a³+b³+3ab(a+b)
Here let a=2+√3
b=2-√3
Similar questions