Math, asked by sohamsangram945, 1 year ago

If a= 2+√3,find the value of a3+1/a3

Answers

Answered by KDPatak
3

Answer:

Given:

  • a = 2+√3
  • to find a³ + 1/a³

Solving Question:

    we are given the value of 'a' to find a³ + 1/a³  first, we have to find 1/a and then cube it.

Solution:

   a = 2+\sqrt{3}\\\\to\:find\:\dfrac{1}{a}\\\\\implies \dfrac{1}{2+\sqrt{3}}\\Rationalise\:denominator\\\\\implies\dfrac{1}{2+\sqrt{3}}*\dfrac{2-\sqrt{3}}{2-\sqrt{3}}\implies \dfrac{2-\sqrt{3}}{4-3}\:( (a-b)(a+b)=a^2-b^2)\\\\or,=\dfrac{2-\sqrt{3}}{1} \:\implies 2-\sqrt{3}

Hence, a = 2+√3 and 1/a = 2-√3

Then, cube it

a³ + 1/a³

(2+√3)³ + (2-√3)³

2³ + (√3)³ +3*2*√3(2+√3) + 2³ - (√3)³ - 3*2*√3 (2-√3) [ ∵ (x+y)³ = x³ +y³+3xy(x+y) and (x-y)³ = x³ -y³ -3xy(x-y) ]

cancel +(√3)³ and -(√3)³

8 +6√3(2+√3) +8- 6√3(2-√3)

16 + 12√3 +18 -12√3+18

16 + 18+18

⇒ 52

Therefore, the value of a³ + 1/a³ = 52

Answered by pratyush4211
3

a=2+√3

 \frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} }

Rationalise it with 2+√3

 \frac{1 \times 2 -  \sqrt{3} }{(2 +  \sqrt{3}) (2 -  \sqrt{3} )}  \\  \\  \frac{2 -  \sqrt{3} }{ {2}^{2}  -  \sqrt{3} {}^{2}  }  \\  \\  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\   = 2 -  \sqrt{3}

a = 2 +  \sqrt{3}  \\  \\  \frac{1}{a}  = 2 -  \sqrt{3}

Now

.

 {a}^{ 3 }  +  \frac{1}{ {a}^{3} }

As we know

(a+b)³=a³+b³+3ab(a+b)

Here let a=2+√3

b=2-√3

(2 +  \sqrt{3} ) {}^{3}   =  {2}^{3}  +  \sqrt{3}  {}^{3}  + 3 \times 2 \times  \sqrt{3} (2 +  \sqrt{3} ) \\  \\ 8 + 3 \sqrt{3}  + 6 \sqrt{3} (2 +  \sqrt{3} ) \\  \\ 8 + 3 \sqrt{3}  + 12 \sqrt{3}  + 6 \times 3 \\  \\ 8 + 3 \sqrt{3}  + 12 \sqrt{3}  + 18 \\  \\ 15 \sqrt{3}  + 26

(2 -  \sqrt{3} ) {}^{3}  =  {2}^{3}  -  \sqrt{3}  {}^{3}  - 3 \times 2 \times  \sqrt{3} (2 -  \sqrt{3} ) \\  \\  = 8 - 3 \sqrt{3} - 6 \sqrt{3}  (2 -  \sqrt{3}) \\  \\ 8 - 3 \sqrt{3}   - 12 \sqrt{3}  - 6 \times -  3 \\  \\ 8 - 15 \sqrt{3}    + 18 \\  \\  26 - 15 \sqrt{3}

 {a}^{ 3}  +  \frac{1}{ {a}^{3} }  = 26 + 15 \sqrt{3}  + 26 - 15 \sqrt{3}  \\  \\  = 26 + 26 \\  \\  = 52

\underline{\mathbf{\huge{{a}^{3}+\frac{1}{{a}^{3}}=52}}}

Similar questions