Math, asked by Aryadeoliya, 2 months ago

If a=2+√3 then a-1/a is equal to
2√3
4
2+√3
none of these​

Answers

Answered by Anonymous
47

Given,

\sf{a = 2 +  \sqrt{3}}

To find,

the value of \sf{a-\frac{1}{a}}.

Solution,

Putting the value of \sf{a = 2 +  \sqrt{3}} in \sf{a-\frac{1}{a}}.

\implies\sf{2 +\sqrt{3}-\frac{1}{ 2 +\sqrt{3}}}

Rationalising the denominator,

\implies\sf{2 +  \sqrt{3}  -  \frac{1}{2 +  \sqrt{3} } \times  \frac{2  -  \sqrt{3} }{2 -  \sqrt{3} }}

\implies\sf{2 +  \sqrt{3} -  \frac{2 -  \sqrt{3} }{(2)^{2} - (\sqrt{3}) ^{2}}}

\implies\sf{2 +  \sqrt{3}  -  \frac{2 -  \sqrt{3} }{4 - 3}}

\implies\sf{2 +  \sqrt{3}  - (2 -  \sqrt{3})}

\implies\sf{\cancel{2}+1\sqrt{3}\cancel{ -2}+1\sqrt{3}}

\implies\sf{1\sqrt{3}+1\sqrt{3}}

\implies\sf{2\sqrt{3}}

\implies{\sf{\boxed{a  - \frac{1}{a}  = 2 \sqrt{3}}}}

Hence, If a=2+√3 then a-1/a is equal to 2√3.

Similar questions