if a = 2+√3, then a^2+1/a^2
Answers
EXPLANATION.
⇒ a = 2 + √3.
As we know that,
We can write equation as,
⇒ 1/a = 1/(2 + √3).
Now, rationalize the equation, we get.
⇒ 1/a = 1/(2 + √3) x (2 - √3)/(2 - √3).
⇒ 1/a = (2 - √3)/[(2)² - (√3)²].
⇒ 1/a = (2 - √3)/[4 - 3].
⇒ 1/a = (2 - √3)/1 = 2 - √3.
To find :
⇒ a² + 1/a².
⇒ a² = (2 + √3)².
⇒ a² = 4 + 3 + 4√3.
⇒ a² = 7 + 4√3.
⇒ 1/a² = (2 - √3)².
⇒ 1/a² = 4 + 3 - 4√3.
⇒ 1/a² = 7 - 4√3.
⇒ (a² + 1/a²) = [(7 + 4√3) + (7 - 4√3].
⇒ (a² + 1/a²) = [7 + 4√3 + 7 - 4√3].
⇒ (a² + 1/a²) = 14.
Answer:
☆Answered by Rohith kumar maths dude: -
▪Here given that,
a=2+root3.
▪This equation we can write it as,
=1/a=1/(2+root3).
▪Next by rationalizing the equation we get that,
1/a=1/2+root3)×(2-root3)/(2-root3)
1/a=1/2+root3/[(2)^2-(root3)^2
1/a=2-root3/(4-3)
1/a=2-root3/1
=2-root3.
.
▪Next, we should find that,
a^2+1/a^2
a^2=(2+root3)^2
▪By equating this equation we get that,
a^2=7+4root3.
.
▪And ,
1/a^2=(2-root3)^2.
▪And also equating this equation we get that,
1/a^2=7-4root3.
☆Next by applying the answers to the in the given question
,
☆we get ,
a^2+1/a^2=[(7+4root3)+(7-4root3)]
a^2+1/a^2=[7+4root3+7-4root3]
a^2+1/a^2=14..
☆Refer it if u got any problem ask me ok .
☆Thank you.
☆Hope it helps u mate.