Math, asked by chauhanmintu809, 8 months ago

if a= 2-√3 then find a^2 + 1/a^2​

Answers

Answered by Anonymous
2

Answer:

\sf{The \ value \ of \ a^{2}+\dfrac{1}{a^{2}} \ is \ 14.}

Given:

\sf{a=2-\sqrt3}

To find:

\sf{The \ value \ of \ a^{2}+\dfrac{1}{a^{2}}.}

Solution:

\sf{a+\dfrac{1}{a}=2-\sqrt3+\dfrac{1}{2-\sqrt3}}

\sf{\therefore{a+\dfrac{1}{a}=2-\sqrt3+\dfrac{1(2+\sqrt3}{(2-\sqrt3)(2+\sqrt3)}}}

\sf{\therefore{a+\dfrac{1}{a}=2-\sqrt3+\dfrac{2+\sqrt3}{4-3}}}

\sf{\therefore{a+\dfrac{1}{a}=2-\sqrt3+2+\sqrt3}}

\sf{\therefore{a+\dfrac{1}{a}=4...(1)}}

__________________

\sf{a^{2}+b^{2}=(a+b)^{2}-2ab}

\sf{Here, \ a=a \ and \ b=\dfrac{1}{a}}

\sf{\therefore{a^{2}+\dfrac{1}{a^{2}}=(a+\dfrac{1}{a})^{2}-2(a\times\dfrac{1}{a})}}

\sf{...from \ equation(1)}

\sf{a^{2}+\dfrac{1}{a^{2}}=4^{2}-2}

\sf{\therefore{a^{2}+\dfrac{1}{a^{2}}=14}}

\sf\purple{\tt{\therefore{The \ value \ of \ a^{2}+\dfrac{1}{a^{2}} \ is \ 14.}}}

Similar questions