Math, asked by aggarwalvanshik, 1 year ago

If a=2+√3 then find a²+1/a²

Answers

Answered by theking20
5

Given,

The value of a = 2+√3

To Find,

The value of a²+1/a²

Solution,

To calculate the value of a²+1/a², first, we have to find the value of 1/a.

1/a = 1/(2+√3)

Now, rationalizing the denominator,

1/a = 1/(2+√3) *(2-√3)/(2-√3)

1/a = (2-√3)/(2²-√3²)

1/a = (2-√3)

Now,

a²+1/a² = (2+√3)²+(2-√3)²

            = 4+3+4√3+4+3-4√3

            = 14

Hence, the value of a²+1/a² is 14.

Answered by Swarup1998
4

a^{2}+\dfrac{1}{a^{2}}=14

Step-by-step explanation:

Given, a=2+\sqrt{3}

So, \dfrac{1}{a}=\dfrac{1}{2+\sqrt{3}}

=\dfrac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}

  • Hint: We rationalize the denominator by multiplying both the numerator and the denominator by (2-\sqrt{3}).

=\dfrac{2-\sqrt{3}}{(2)^{2}-(\sqrt{3})^{2}}

=\dfrac{2-\sqrt{3}}{4-3}

=2-\sqrt{3}

Now, a+\dfrac{1}{a}

=2+\sqrt{3}+2-\sqrt{3}

=4

So, a^{2}+\dfrac{1}{a^{2}}

=(a+\dfrac{1}{a})^{2}-2\times a\times \dfrac{1}{a}

=(4)^{2}-2

=16-2

=14

#SPJ3

Similar questions