Math, asked by abhinav7279, 1 year ago

If a=2+√3 , then find the value of a-1/a.

Answers

Answered by Vamprixussa
5

Given

a = 2 + \sqrt{3}

Substituting, we get,

\bold{\bold{\frac{2+\sqrt{3}-1 }{2+\sqrt{3} } }}

Rationalizing the denominator,

\bold{\frac{1+\sqrt{3} }{2+\sqrt{3}  } * \frac{2-\sqrt{3} }{2-\sqrt{3} } }

\bold{\frac{2-\sqrt{3}+2\sqrt{3}-3  }{4-3} }

\bold{\frac{-1+\sqrt{3} }{1} }

\boxed{\boxed{\bold{ \sqrt{3}-1} }}

                                                   


Anonymous: Awesome :)))
Answered by tahseen619
2

√3 - 1

2√3

Step-by-step explanation:

Given:

a = 2 +√3

To find:

It's not clearly mentioned that ,

 \frac{a - 1}{a} .........(i)  \\  \\ \:  \: or \\  \\  \: a \:  \:  -  \frac{1}{a} .......(ii)

Solution:

In (i),

Substituting the value I get ,

 \frac{2 +  \sqrt{3} - 1 }{2 +  \sqrt{3} }  \\  \\  \frac{1 +  \sqrt{3} }{2 +  \sqrt{3} } \\ \: \\  [Rationalizing \:   \: \:  the \:  \:  \:  denominator] \: \\ \\</p><p>\frac{(1 +  \sqrt{3} )(2 -  \sqrt{3} )}{(2 +  \sqrt{3} )(2 -  \sqrt{3} )} \\  \\  \frac{2 -  \sqrt{3}  + 2 \sqrt{3}  - 3}{ {(2)}^{2}  -  {( \sqrt{3}) }^{2} }  \\  \\  \frac{ \sqrt{3} - 1 }{1}  \\  \\  \sqrt{3}  - 1

So, (i) is √3 - 1.

In (ii),

See in the attachment.

Attachments:
Similar questions