Math, asked by sahilbansal03091996, 10 months ago

if a=2+√3, then find the value of a-1\a​

Answers

Answered by TheLifeRacer
6

Answer:

2√3

Step-by-step explanation:

a = 2+√3_______(1)

1/a = 1/2+√3

Rationalise it,

1/a = 1/2+√3×2-√3/2-√3

= 2-√3/(2)²-(√3)²

= 2-√3________(2)

so, a+1/a = 2+√3-2+√3=2√3 from (1) and (2) equation

______________________

Hope it's helpful

Answered by anshi60
10

AnSwEr

√3 - 1

QuEsTiOn :-

if a=2+√3, then find the value of a-1\a.

SoLuTiOn :-

Given

a = 2 + √3

then ,

 \frac{a - 1}{a}  \\  \\ putting \: a \:  = 2 +  \sqrt{3} \\  \\  =  \frac{2 +  \sqrt{3} - 1 }{2 +  \sqrt{3} }  \\  \\ =  \frac{ 1 +  \sqrt{3} }{2 +  \sqrt{3} } \\  \\    by \: rationalising \: the \: denominator \:  \\  \\ =   \frac{(1 +  \sqrt{3})  \times (2 -  \sqrt{3} )}{(2 +  \sqrt{3} ) \times (2 -  \sqrt{3} )}  \\  \\  =  \frac{1(2 -  \sqrt{3} ) +  \sqrt{3} (2 -  \sqrt{3} )}{ {(2)}^{2} -   {( \sqrt{3}) }^{2}  }

By using identify=>

(a - b) (a + b) = a² - b²

  = \frac{2 -  \sqrt{3}  + 2 \sqrt{3}  - 3}{4 - 3}  \\  \\  =   \sqrt{3}  - 1

Therefore,

{\purple{\boxed{\large{\bold{The \: value \: of \:  \frac{a - 1}{a \:  }  =  \sqrt{3} - 1 }}}}}

Similar questions